Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor.
نویسندگان
چکیده
Genetically constructed microbial biosensors for measuring organic pollutants are mostly applied in aqueous samples. Unfortunately, the detection limit of most biosensors is insufficient to detect pollutants at low but environmentally relevant concentrations. However, organic pollutants with low levels of water solubility often have significant gas-water partitioning coefficients, which in principle makes it possible to measure such compounds in the gas rather than the aqueous phase. Here we describe the first use of a microbial biosensor for measuring organic pollutants directly in the gas phase. For this purpose, we reconstructed a bioluminescent Pseudomonas putida naphthalene biosensor strain to carry the NAH7 plasmid and a chromosomally inserted gene fusion between the sal promoter and the luxAB genes. Specific calibration studies were performed with suspended and filter-immobilized biosensor cells, in aqueous solution and in the gas phase. Gas phase measurements with filter-immobilized biosensor cells in closed flasks, with a naphthalene-contaminated aqueous phase, showed that the biosensor cells can measure naphthalene effectively. The biosensor cells on the filter responded with increasing light output proportional to the naphthalene concentration added to the water phase, even though only a small proportion of the naphthalene was present in the gas phase. In fact, the biosensor cells could concentrate a larger proportion of naphthalene through the gas phase than in the aqueous suspension, probably due to faster transport of naphthalene to the cells in the gas phase. This led to a 10-fold lower detectable aqueous naphthalene concentration (50 nM instead of 0.5 micro M). Thus, the use of bacterial biosensors for measuring organic pollutants in the gas phase is a valid method for increasing the sensitivity of these valuable biological devices.
منابع مشابه
Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid.
In this work, we explore the potential use of the Pseudomonas putida KT2440 strain for bioremediation of naphthalene-polluted soils. Pseudomonas putida strain KT2440 thrives in naphthalene-saturated medium, establishing a complex response that activates genes coding for extrusion pumps and cellular damage repair enzymes, as well as genes involved in the oxidative stress response. The transfer o...
متن کاملبررسی راندمان بیوراکتور دو فازی همزن دار به منظور تصفیه بخارات گزیلن از جریان هوا با بستری از سودوموناس پتیدا
Introduction: Volatile organic compounds such as xylene, which are the main constituents of the oil and petrochemical industries, have serious impacts on health and can cause adverse effects on the environment. It is clear that release of these compounds into the environment should be controlled. The two-phases partitioning stirred tank bio-reactor is one of the newest methods for treating thes...
متن کاملTransmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida.
The capacity of Pseudomonas putida PpG7 (ATCC 17,485) to grow on naphthalene, phenotype Nah(+), is lost spontaneously, and the frequency is increased by treatment with mitomycin C. The Nah(+) growth character can be transferred to cured or heterologous fluorescent pseudomonads lacking this capacity by conjugation, or between phage pf16-sensitive strains by transduction. After mutagenesis, strai...
متن کاملSimulation study of the performance of a biologically sensitive field effect transistor
The transformation of biochemical information into a physical or chemical signal is the basic idea behind a biosensor. The efficient detection of charged biomolecules by biosensor with appropriate device has caught tremendous research interest in the present decade. The present work is related to the simulation study of the performance of a functionalized surface of a biologically sensitive fie...
متن کاملSimulation study of the performance of a biologically sensitive field effect transistor
The transformation of biochemical information into a physical or chemical signal is the basic idea behind a biosensor. The efficient detection of charged biomolecules by biosensor with appropriate device has caught tremendous research interest in the present decade. The present work is related to the simulation study of the performance of a functionalized surface of a biologically sensitive fie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 70 1 شماره
صفحات -
تاریخ انتشار 2004